Transforms - Fourier Transform Pairs

 
   
     
       

Fourier Transform

       

Standard Fourier Transform Pairs

       

          These are pre-computed Fourier Transform pairs for commonly used functions. They act as reference identities to simplify transformations without computing integrals manually.        

        Common Fourier Transform Pairs.      
     
       
         

Examples of Fourier Pairs:

         
           

\[ f(x) \iff F(s) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i sx}dx \]

           

\[ f(ax) \iff \frac{1}{|a|}F\left(\frac{s}{a}\right) \]

           

\[ f(x-a) \iff e^{-2\pi ias}F(s) \]

           

\[ \frac{d^n}{dx^n} f(x) \iff (2\pi is)^n F(s) \]

           

\[ \delta(x) \iff 1 \quad ; \quad 1 \iff \delta(s) \]

           

\[ e^{-a|x|} \iff \frac{2a}{a^2 + 4\pi^2 s^2} \quad ; \quad xe^{-a|x|} \iff \frac{8\pi ia s}{(a^2 + 4\pi^2 s^2)^2} \]

           

\[ e^{-x^2/a^2} \iff a\sqrt{\pi}e^{-\pi^2 a^2 s^2} \]

           

\[ \sin(ax) \iff \frac{1}{2i}[\delta(s - a/2\pi) - \delta(s + a/2\pi)] \]

           

\[ \cos(ax) \iff \frac{1}{2}[\delta(s - a/2\pi) + \delta(s + a/2\pi)] \]

           

\[ \text{sinc}(x) = \frac{\sin(\pi x)}{\pi x} \iff \text{Rectangular pulse} \]

         
         

Applications:

         
               
  • Simplifies Fourier transforms in real-time signal analysis.
  •            
  • Used in modulation, filtering, and waveform synthesis.
  •            
  • Crucial in frequency response studies and filter design.
  •          
       
     
         
 
×

×