Analytical Geometry - Line

 
   
     
       

3D Geometry – Line

       

Distance and Direction Cosines

       

          In 3D space, a line can be described using vector equations, coordinates, or parametric forms. The distance and orientation between two points on a line are measured using Euclidean distance and direction cosines.        

     
     
       
         
1. Distance Between Two Points \( A(x_1, y_1, z_1) \) and \( B(x_2, y_2, z_2) \):
         

            \[             d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}             \]          

         
2. Direction Cosines:
         

            Direction cosines represent the cosines of angles made by a line with the x, y, and z axes.          

         

            \[             l = \cos \alpha = \frac{x_2 - x_1}{d}, \quad             m = \cos \beta = \frac{y_2 - y_1}{d}, \quad             n = \cos \gamma = \frac{z_2 - z_1}{d}             \]          

         

            The fundamental identity for direction cosines:             \[             l^2 + m^2 + n^2 = 1             \]          

         
            Line Distance in 3D          
         

Key Properties:

         
               
  • The line in 3D is defined by two points or one point and a direction vector.
  •            
  • Direction cosines uniquely determine the orientation of a line in space.
  •            
  • They are useful in expressing direction vectors in normalized form.
  •            
  • Distance is always non-negative and represents the shortest path between two points.
  •          
         

Applications:

         
               
  • Used in physics to describe the direction of forces and motion in 3D.
  •            
  • Essential in **3D modeling**, **computer graphics**, and **engineering design**.
  •            
  • Helps define the orientation of **camera vectors** in virtual reality and simulations.
  •            
  • Used in navigation and aerospace for path planning and direction determination.
  •          
       
     
         
 
×

×