Equations - Sec

 
   
     
       

Secant Function (sec)

       

Understanding the Secant Trigonometric Function

       

          The Secant function is the reciprocal of the cosine function in trigonometry. It is defined as:        

     
     
       
         

Definition:

         

            \[             \sec(\theta) = \frac{1}{\cos(\theta)}             \]          

         
            Secant Graph          
         

Key Properties:

         
               
  • Undefined when \( \cos(\theta) = 0 \) (i.e., \( \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \ldots \))
  •            
  • Even function: \( \sec(-\theta) = \sec(\theta) \)
  •            
  • Periodicity: \( \sec(\theta + 2\pi) = \sec(\theta) \)
  •            
  • Range: \( (-\infty, -1] \cup [1, \infty) \)
  •          
         

Applications of Secant:

         
               
  • Used in solving right-angled triangle problems
  •            
  • Appears in calculus and integration involving trigonometric identities
  •            
  • Important in wave motion, optics, and engineering
  •            
  • Applied in architecture for slope and height calculations
  •          
       
     
         
 
×

×