Analytical Geometry - Ellipse

 
   
     
       

Analytic Geometry – Ellipse

       

Equation and Properties of an Ellipse

       

          An ellipse is a set of points such that the sum of the distances from two fixed points (called foci) is constant. It appears as an elongated circle and arises frequently in orbital mechanics, optics, and geometry.        

     
     
       
         
Standard Equation of an Ellipse
         

            \[             \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1             \]          

         

Where:

         
               
  • \(a\): Semi-major axis (horizontal stretch if \(a > b\))
  •            
  • \(b\): Semi-minor axis
  •            
  • Center: Origin (0,0)
  •          
         
Focal Relationship
         

            \[             a^2 = b^2 + c^2             \quad \text{(where } c \text{ is the distance from center to focus)}             \]          

         

From this relation, we derive many other properties.

         
Eccentricity
         

            \[             \varepsilon = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}, \quad \varepsilon < 1             \]          

         

The eccentricity measures how "stretched" the ellipse is. If \( \varepsilon = 0 \), the ellipse is a circle.

         
Focal Property
         

For any point \( M(x, y) \) on the ellipse, the sum of distances to the foci \( F \) and \( F_1 \) is:

         

            \[             FM + F_1M = 2a             \]          

         
Distance to a Focus (from a point \( M(x, y) \))
         

            \[             r = a \pm \varepsilon x             \]          

         
Area of the Ellipse
         

            \[             A = \pi a b             \]          

         
            Ellipse Formula          
         

Key Properties:

         
               
  • Ellipses are symmetric with respect to both axes.
  •            
  • The sum of the distances from any point on the ellipse to the two foci is constant and equals \(2a\).
  •            
  • If \( a = b \), it becomes a circle.
  •            
  • All planetary orbits (according to Kepler’s 1st law) are elliptical.
  •          
         

Applications:

         
               
  • Orbital motion of planets and satellites
  •            
  • Reflection properties in whispering galleries and optics
  •            
  • Navigation systems and signal reflection
  •            
  • Mechanical design (e.g., elliptical gears, cams)
  •          
       
     
   
 
×

×