Statistics - Union

 
   
     
       

Union

       

Understanding Union of Sets

       

          The union of two sets includes all elements from both sets, without duplication. It is denoted by the symbol . The union operation forms a set that contains all elements that are in set A, in set B, or in both.        

        Union A ∪ B      
     
       
         

Union Notation:

         
           

              \[               A \cup B = \{x \mid x \in A \text{ or } x \in B\}               \]            

         
         

This means the set of all elements x such that x is in A, or in B, or in both.

         

Example:

         

Let:

         
           

              \[               A = \{2, 4, 6\}, \quad B = \{4, 5, 7\}               \]               \[               A \cup B = \{2, 4, 5, 6, 7\}               \]            

         
         

Note that 4, being common in both sets, appears only once in the union.

         

Key Properties of Union:

         
               
  • Commutative: \( A \cup B = B \cup A \)
  •            
  • Associative: \( (A \cup B) \cup C = A \cup (B \cup C) \)
  •            
  • Identity: \( A \cup \emptyset = A \)
  •            
  • Idempotent: \( A \cup A = A \)
  •          
         

Applications of Set Union:

         
               
  • Merging datasets in programming and database queries
  •            
  • Finding all possible outcomes in probability
  •            
  • In Venn diagrams, representing total covered area of multiple sets
  •            
  • In surveys, representing people who like either or both options
  •          
       
     
         
 
×

×