Statistics - Example

 
   
     
       

Example: Mean, Median, and Mode

       

Analyzing a Data Set

       

          Let's explore how to calculate the mean (average), median (middle value), and mode (most frequent value) of a given data set. These are fundamental measures of central tendency in statistics.        

        Set Example      
     
       
         

Given Set:

         
           

              \( A = \{1, 2, 2, 2, 5, 8, 8, 9\} \)            

         
         

1. Mean (Arithmetic Average):

         
           

              \[               \bar{x} = \frac{1 + 2 + 2 + 2 + 5 + 8 + 8 + 9}{8} = \frac{37}{8} = 4.625               \]            

         
         

The mean is the sum of all values divided by the total number of values.

         

2. Median (Middle Value):

         

Since the set has 8 numbers (even), the median is the average of the 4th and 5th values after sorting:

         
           

              \[               x_{\text{median}} = \frac{x_4 + x_5}{2} = \frac{2 + 5}{2} = 3.5               \]            

         
         

3. Mode (Most Frequent Value):

         

Count the frequencies of each number:

         
           

              \[               \text{Frequencies: } F(2) = 3,\quad F(8) = 2,\quad F(1) = F(5) = F(9) = 1               \Rightarrow x_{\text{mode}} = 2               \]            

         
         

The mode is the value that appears most frequently — here, it's 2.

         

Key Insights:

         
               
  • Mean reflects the overall average value
  •            
  • Median shows the central point of the data
  •            
  • Mode identifies the most repeated observation
  •          
         

Applications:

         
               
  • Analyzing student test scores or salaries
  •            
  • Used in machine learning and data science for summarizing data sets
  •            
  • Helps in decision making, marketing, and economic forecasting
  •          
       
     
         
 
×

×