Analytical Geometry - Elliptic Paraboloid

 
   
     
       

Analytic Geometry – Elliptic Paraboloid

       

Equation and Properties of Elliptic Paraboloid

       

          An elliptic paraboloid is a three-dimensional surface shaped like a paraboloid with elliptical cross-sections. It opens along the Z-axis and has parabolic curves in the xz- and yz-planes.        

       

          \[           \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}           \]        

       
          Elliptic Paraboloid        
     
     
       
         

Key Components:

         
               
  • \(a, b\): Control the curvature in x- and y-directions respectively.
  •            
  • \(c\): Determines the rate of change of \(z\) with respect to the radial distance from the origin.
  •            
  • Opens upward along the z-axis if \(c > 0\), downward if \(c < 0\).
  •          
         

Key Properties of Elliptic Paraboloids:

         
               
  • Each horizontal cross-section (\(z = \text{constant}\)) is an ellipse.
  •            
  • Each vertical cross-section is a parabola.
  •            
  • The surface is smooth and continuous, with a single vertex (minimum or maximum point).
  •            
  • It is symmetric with respect to the z-axis.
  •          
         

Applications of Elliptic Paraboloids:

         
               
  • Design of satellite dishes and telescopes (reflector shape).
  •            
  • Used in architectural structures like parabolic domes and bridges.
  •            
  • Modeling projectile motion in physics and engineering simulations.
  •            
  • Optimization problems in mathematics and economics.
  •          
       
     
         
 
×

×