Transforms - Complex Form

   
       
           
               

Fourier Series

               

Complex Form of Fourier Series

               

                    The complex form of the Fourier Series uses Euler’s identity to express a periodic function as a sum of exponential functions. It simplifies computations and is often used in higher mathematics and physics.                

                Complex form of Fourier Series using exponential notation.            
           
               
                   

Definition:

                   

A periodic function \(f(x)\) with period \(2L\) is represented as:

                   
                       

\[ f(x) = \sum_{n=-\infty}^{\infty} c_n \exp\left(\frac{in\pi x}{L}\right) \]

                   
                   

Fourier Coefficients:

                   
                       

\[ c_n = \frac{1}{2L} \int_{-L}^{L} f(x) \exp\left(\frac{-in\pi x}{L}\right) dx \]

                   
                   

Key Properties:

                   
                           
  • The use of complex exponentials simplifies analysis, especially in convolution and filtering.
  •                        
  • All signal energy is concentrated in discrete frequencies indexed by \(n\).
  •                        
  • It unifies both sine and cosine terms into a single formula.
  •                    
                   

Applications:

                   
                           
  • Signal processing and frequency analysis.
  •                        
  • Quantum mechanics (wavefunctions and spectral decomposition).
  •                        
  • Digital communications (modulation techniques).
  •                    
               
           
                   
   
×

×