\[ \sin x = m \]
If \(|m| \leq 1\), the solutions are:
\[ x_1 = \alpha + 2k_1 \pi, \quad k_1 \in \mathbb{Z} \]
\[ x_2 = (\pi - \alpha) + 2k_2 \pi, \quad k_2 \in \mathbb{Z} \]
where \(\alpha = \arcsin m\), and \(-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}\).
If \(|m| > 1\), there is no real solution.