Analytical Geometry - Points

 
   
     
       

Coordinate Geometry – Points

       

Distance Between Two Points

       

          In coordinate geometry, the distance formula is used to calculate the straight-line distance between two points in a 2D plane.        

       
1. Distance Between Two Points \( A(x_1, y_1) \) and \( B(x_2, y_2) \):
       

          \[           d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}           \]        

       
2. Distance From Origin to a Point \( (x, y) \):
       

          \[           d = \sqrt{x^2 + y^2}           \]        

        Distance Between Two Points        

Key Properties:

       
             
  • The formula is derived from the Pythagorean theorem.
  •          
  • Distance is always non-negative.
  •          
  • Used to measure straight-line (Euclidean) distance.
  •        
       

Applications:

       
             
  • To compute length of sides in polygons and triangles.
  •          
  • Used in physics to calculate displacement between two coordinates.
  •          
  • Applied in computer graphics for object positioning and collision detection.
  •          
  • Helpful in GPS and mapping systems to calculate shortest paths.
  •        
     
   
 
×

×