Analytical Geometry - A Triangle

 
   
     
       

Coordinate Geometry – Triangle

       

Area of a Triangle in the Coordinate Plane

       

          In coordinate geometry, the area of a triangle formed by three points can be calculated using determinants, vector products, or coordinate formulas.        

     
     
       
         
1. Area with vertices \( A(x_1, y_1), B(x_2, y_2), C(x_3, y_3) \)
         

Determinant form:

         

            \[             A = \frac{1}{2} \left|             \begin{vmatrix}             x_2 - x_1 & y_2 - y_1 \\             x_3 - x_1 & y_3 - y_1             \end{vmatrix}             \right|             \]          

         

Expanded version:

         

            \[             A = \frac{1}{2} \left[ (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1) \right]             \]          

         

Alternate symmetric form:

         

            \[             A = \frac{1}{2} \left[ x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right]             \]          

         
2. Area when one vertex is at the origin \( (0, 0) \)
         

            \[             A = \frac{1}{2} \left| x_1 y_2 - x_2 y_1 \right|             \]          

         

This formula simplifies computation when one vertex is at the origin.

         
            Triangle Area Diagram          
         

Key Properties:

         
               
  • Area is always non-negative due to the absolute value
  •            
  • Works for any triangle formed in 2D Cartesian plane
  •            
  • If area = 0, then the points are collinear
  •          
         

Applications:

         
               
  • Used in computer graphics to determine shape boundaries
  •            
  • Geometry-based proofs and coordinate system theorems
  •            
  • Physics simulations involving vectors and surfaces
  •            
  • Calculating land or plot area using GPS coordinates
  •          
       
     
   
 
×

×