Analytical Geometry - Hyperbolic Paraboloid

 
   
     
       

Analytic Geometry – Hyperbolic Paraboloid

       

Equation and Properties of Hyperbolic Paraboloid

       

          A hyperbolic paraboloid is a saddle-shaped surface that curves upward in one direction and downward in the other.        

     
     
       
         
Standard Equation:
         

            \[             \frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}             \]             where \( a, b, c \) are constants that scale the surface along each axis.          

         
            Hyperbolic Paraboloid          
         

Key Properties:

         
               
  • It is a **saddle surface** – curves up along one axis and down along another.
  •            
  • Every cross-section parallel to the xz-plane is a **parabola**.
  •            
  • Every cross-section parallel to the yz-plane is a **parabola** (with opposite curvature).
  •            
  • Cross-sections parallel to the xy-plane are **hyperbolas**.
  •            
  • The surface has a **saddle point** at the origin (0,0,0) if centered there.
  •          
         

Applications:

         
               
  • Used in **architecture** for modern roofs and bridges (e.g., saddle roofs).
  •            
  • Found in **reflector antennas** and solar panels to optimize angle of incidence.
  •            
  • Appears in **optimization problems** and **differential geometry**.
  •            
  • Studied in **economics** in utility and cost functions with saddle point behavior.
  •          
       
     
         
 
×

×