Transforms - Correlation

 
   
     
       

Correlation

       

Understanding Correlation

       

          Correlation measures the similarity between two signals. It is used to detect patterns or signal alignment, especially in noise.        

        Mathematical definition and properties of correlation.      
     
       
         

Key Formulas:

         
           

\[ f^*(x) \star f(x) \iff |F(s)|^2 \]

           

\[ f^*(x) \star g(x) = \int_{-\infty}^{\infty} f^*(u - x)g(u)du \]

           

\[ \int_{-\infty}^{\infty} f(x)g^*(x)dx = \int_{-\infty}^{\infty} F(s)G^*(s)ds \]

           

\[ \frac{d}{dx} \left[f(x) * g(x)\right] = \frac{df(x)}{dx} * g(x) = \frac{dg(x)}{dx} * f(x) \]

         
         

Key Properties:

         
               
  • Cross-correlation measures similarity; auto-correlation measures periodicity.
  •            
  • Involves the complex conjugate \( f^*(x) \) in many expressions.
  •            
  • Frequency domain representation involves product of one transform and the conjugate of the other.
  •          
         

Applications:

         
               
  • Pattern recognition and signal detection.
  •            
  • Image and audio template matching.
  •            
  • Radar, sonar, and time delay estimation.
  •          
       
     
         
 
×

×