Analytical Geometry - Equation Of Circle

   
       
           
               

Analytic Geometry – Circle

               

Equation of a Circle

               

                    A circle is the set (locus) of all points in a plane that are at a fixed distance (radius) from a fixed point called the center.                

                               

Standard Equation (Center at (a, b), radius r):

               

                    \[                     (x - a)^2 + (y - b)^2 = r^2                     \]                

               

Special Case (Center at origin (0, 0)):

               

                    \[                     x^2 + y^2 = r^2                     \]                

               
                    Equation of Circle                
           
           
               
                   

Key Properties of a Circle:

                   
                           
  • The radius \( r \) is constant for all points on the circle.
  •                        
  • The circle is symmetric about its center.
  •                        
  • The longest chord of a circle is its diameter: \( 2r \).
  •                        
  • Circumference: \( C = 2\pi r \), Area: \( A = \pi r^2 \).
  •                        
  • No corners or edges; curvature is constant.
  •                    
                   

Applications of the Circle Equation:

                   
                           
  • Design and layout of wheels, gears, and roundabouts in engineering.
  •                        
  • Graphics and UI design for drawing circular arcs or borders.
  •                        
  • In robotics, for circular motion planning and path prediction.
  •                        
  • Used in satellite orbits and astronomical calculations.
  •                        
  • Helps in solving geometry problems involving tangents, secants, and chords.
  •                    
               
           
                   
   
×

×