Algebra - Identity

Algebraic Identities

Mastering Algebraic Identities: Key Formulas and Applications in Simplifying Expressions

Algebraic identities are standard mathematical formulas that hold true for all variable values. They are commonly used to simplify, expand, or factor algebraic expressions without direct computation and are essential in solving equations and proving other algebraic results.

1. Basic Square and Cube Identities

\[ (a \pm b)^2 = a^2 \pm 2ab + b^2 \]

\[ (a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3 \]

\[ (a \pm b)^4 = a^4 \pm 4a^3b + 6a^2b^2 \pm 4ab^3 + b^4 \]

2. Identities with Three Variables

\[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc \]

\[ (a + b - c)^2 = a^2 + b^2 + c^2 + 2ab - 2ac - 2bc \]

\[ (a - b - c)^2 = a^2 + b^2 + c^2 - 2ab - 2ac + 2bc \]

\[ (a + b + c)^3 = a^3 + b^3 + c^3 + 6abc + 3(a^2b + ab^2 + b^2c + bc^2 + c^2a + ca^2) \]

3. Generalized Square Identity

\[ \left(a_1 + a_2 + \dots + a_n\right)^2 = \sum_{i=1}^n a_i^2 + 2 \sum_{i < j} a_ia_j \]

4. Special Product Identities

\[ a^2 - b^2 = (a - b)(a + b) \]

\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \]

\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \]

\[ a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2 \]

\[ a^4 - b^4 = (a^2 - b^2)(a^2 + b^2) \]

\[ a^5 + b^5 = (a + b)(a^4 - a^3b + a^2b^2 - ab^3 + b^4) \]

\[ a^5 - b^5 = (a - b)(a^4 + a^3b + a^2b^2 + ab^3 + b^4) \]

×

×