Transforms - Real Form Of Fourier Series

   
       
           
               

Fourier Series

               

Real Form of Fourier Series

               

                    The Fourier Series allows a periodic function to be expressed as a sum of sine and cosine functions. This representation is especially helpful in analyzing signals and solving differential equations.                     The real form uses trigonometric terms and is suitable when dealing with real-valued functions.                

                Real form of Fourier Series with sine and cosine terms.            
           
               
                   

Definition:

                   

                        A function \( f(x) \) defined on an interval \([-L, L]\) with period \(2L\) can be written as:                    

                   
                       

\[ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right) \]

                   
                   

Fourier Coefficients:

                   
                       

\[ a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} \, dx \]

                       

\[ b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} \, dx \]

                   
                   

Key Properties:

                   
                           
  • The series includes both sine and cosine terms for complete representation.
  •                        
  • \(a_n\) captures the even part (cosine symmetry), and \(b_n\) captures the odd part (sine symmetry) of the function.
  •                        
  • If the function is even, all \(b_n = 0\); if odd, all \(a_n = 0\).
  •                    
                   

Applications:

                   
                           
  • Signal decomposition in electrical engineering.
  •                        
  • Modeling periodic phenomena in physics and mechanics.
  •                        
  • Used in solving partial differential equations such as the heat and wave equations.
  •                    
               
           
                   
   
×

×