Analytical Geometry - Equation Of Ellipsoid With Center M And Semi-Axes A,B,C

 
   
     
       

Analytic Geometry – Ellipsoid

       

Equation of an Ellipsoid (Centered at M)

       

          An ellipsoid is a 3D geometric surface that generalizes the shape of an ellipse to three dimensions. It is defined by three semi-axes (a, b, c) and centered at a point \( M(x_0, y_0, z_0) \).        

       

General Equation of an Ellipsoid:

       

          \[           \frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} + \frac{(z - z_0)^2}{c^2} = 1           \]        

       
          Ellipsoid Equation        
     
     
       
         

Key Properties of an Ellipsoid:

         
               
  • Three semi-axes: a (along x-axis), b (along y-axis), c (along z-axis).
  •            
  • When \( a = b = c \), the ellipsoid becomes a perfect sphere.
  •            
  • Symmetric about all three coordinate planes.
  •            
  • Closed surface: finite volume, no edges or corners.
  •          
         

Applications of Ellipsoids:

         
               
  • Modeling planetary and celestial body shapes (e.g., Earth as an oblate ellipsoid).
  •            
  • In medical imaging and radiology (e.g., MRI scan approximations).
  •            
  • Physics simulations involving gravitational fields and ellipsoidal mass distributions.
  •            
  • Used in architecture and CAD software to design domes and ovoid objects.
  •            
  • Navigation and GPS systems apply ellipsoid models for accurate positioning.
  •          
       
     
         
 
×

×