Statistics - Operations On Sets

 
   
     
       

Operations on Sets

       

Set Identities and Laws

       

          Set theory operations follow several identities and laws that govern how sets behave under union, intersection, and complement. These laws are foundational in mathematics, computer science, and logic.        

     
     
       
         
1. Idempotent and Commutative Laws
         

\( A \cup A = A \): Union with itself gives the same set

         

\( A \cap A = A \): Intersection with itself gives the same set

         

\( A \cup B = B \cup A \): Union is commutative

         

\( A \cap B = B \cap A \): Intersection is commutative

         
2. Associative Laws
         

\( (A \cup B) \cup C = A \cup (B \cup C) \): Grouping doesn’t affect union

         

\( (A \cap B) \cap C = A \cap (B \cap C) \): Grouping doesn’t affect intersection

         
3. Distributive Laws
         

\( A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)

         

\( A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)

         

These distribute one operation over another

         
4. Complement Laws
         

\( U' = \varnothing \): Complement of universal set is empty

         

\( \varnothing' = U \): Complement of empty set is universal

         

\( A \cup U = U \): Anything united with universal set is universal

         

\( A \cap U = A \): Intersection with universal set gives original set

         

\( A \cup \varnothing = A \): Union with empty set gives original set

         

\( A \cap \varnothing = \varnothing \): Intersection with empty set gives empty set

         
5. Double Complement and Fundamental Properties
         

\( (A')' = A \): Double complement restores the set

         

\( A \cup A' = U \): Union of a set and its complement is universal

         

\( A \cap A' = \varnothing \): Intersection of a set and its complement is empty

         
6. De Morgan’s Laws
         

\( (A \cup B)' = A' \cap B' \): Complement of union is intersection of complements

         

\( (A \cap B)' = A' \cup B' \): Complement of intersection is union of complements

         

Key Properties:

         
               
  • Allow algebraic manipulation of set expressions
  •            
  • Form the basis of Boolean algebra and digital logic
  •            
  • Make set-based problem-solving structured and rule-driven
  •          
         

Applications:

         
               
  • Database querying (using AND, OR, NOT logic)
  •            
  • Computer logic circuits and programming conditionals
  •            
  • Designing Venn diagrams and analyzing data overlaps
  •            
  • Proving mathematical theorems and identities
  •          
       
     
         
 
×

×