Analytical Geometry - Plane

 
   
     
       

3D Geometry – Plane

       

Equation, Intercepts, Normal & Distance

       

          In 3D geometry, a plane is a flat, two-dimensional surface that extends infinitely in space. It can be uniquely defined by:          

               
  • A point and a normal vector
  •            
  • Three non-collinear points
  •            
  • Its intercepts with the axes
  •          
       

     
     
       
1. General Form of a Plane:
       

          \[           Ax + By + Cz + D = 0           \]           This is the most commonly used equation of a plane, where \( A, B, C \) define the normal vector to the plane.        

       
2. Plane Passing Through Three Points:
       

          \[           \begin{vmatrix}           x - x_1 & y - y_1 & z - z_1 \\           x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\           x_3 - x_1 & y_3 - y_1 & z_3 - z_1           \end{vmatrix} = 0           \]           This form uses the determinant to ensure the three vectors lie in the same plane.        

       

Expanded Form:

       

          \[           \left|           \begin{array}{cc}           y_2 - y_1 & z_2 - z_1 \\           y_3 - y_1 & z_3 - z_1           \end{array}           \right| (x - x_1)           \]        

       

          \[           +           \left|           \begin{array}{cc}           z_2 - z_1 & x_2 - x_1 \\           z_3 - z_1 & x_3 - x_1           \end{array}           \right| (y - y_1)           \]        

       

          \[           +           \left|           \begin{array}{cc}           x_2 - x_1 & y_2 - y_1 \\           x_3 - x_1 & y_3 - y_1           \end{array}           \right| (z - z_1) = 0           \]        

       
3. Intercept Form:
       

          If the plane cuts the x, y, and z axes at \( a, b, c \), then the equation is:
          \[           \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1           \]        

        Plane Intercept Form        
4. Normal Form:
       

          The normal form uses angles \( \alpha, \beta, \gamma \) made by the perpendicular from the origin:           \[           x \cos \alpha + y \cos \beta + z \cos \gamma = p           \]           where \( p \) is the distance from origin to the plane.        

       
5. Distance from a Point to a Plane:
       

          The perpendicular distance from point \( M(x_0, y_0, z_0) \) to the plane is:           \[           d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}           \]        

        Plane Normal and Distance        

Key Properties:

       
             
  • The normal vector \( (A, B, C) \) defines the orientation of the plane.
  •          
  • A plane is completely determined by three non-collinear points.
  •          
  • The shortest distance from a point to a plane is along the perpendicular (normal).
  •        
       

Applications:

       
             
  • Used in 3D modeling and CAD (Computer-Aided Design).
  •          
  • Essential in physics for representing forces and fields acting on surfaces.
  •          
  • In engineering, helps analyze structural components like slabs and walls.
  •          
  • Used in aerospace and navigation to compute flight paths and orientations.
  •        
     
   
 
×

×