Analytical Geometry - Hyperbola

 
   
     
       

Analytic Geometry – Hyperbola

       

Equation and Properties of Hyperbola

       

          A hyperbola is the set of all points in a plane where the absolute difference of the distances from two fixed points (foci) is constant.        

     
     
       
         
Fundamental Properties:
         

            Let \( F \) and \( F_1 \) be the foci. Then:          

         

            \[             FM - F_1M = AA_1 = 2a, \quad FF_1 = 2c, \quad c^2 - a^2 = b^2             \]          

         
Standard Equation of Hyperbola:
         

            \[             \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1             \]             This represents a hyperbola that opens left and right.          

         
Eccentricity of Hyperbola:
         

            \[             \varepsilon = \frac{c}{a} = \frac{\sqrt{a^2 + b^2}}{a}, \quad \varepsilon > 1             \]          

         
Distance from a Point to a Focus:
         

            For a point \( M \) on the hyperbola:          

         

            \[             r = \varepsilon x - a, \quad r_1 = \varepsilon x + a             \]          

         
            Hyperbola Formula          
         

Key Properties:

         
               
  • Two symmetric branches opening in opposite directions (left-right or up-down).
  •            
  • The transverse axis passes through the foci and the center.
  •            
  • The conjugate axis is perpendicular to the transverse axis.
  •            
  • Asymptotes: lines the curve approaches but never touches.
  •          
         

Applications of Hyperbolas:

         
               
  • Used in navigation systems like LORAN and GPS.
  •            
  • Reflective properties used in satellite dishes and telescopes.
  •            
  • Common in physics to describe certain types of orbits and wave propagation.
  •            
  • Modeling shock waves and radiation patterns.
  •          
       
     
         
 
×

×